Journal of Organometallic Chemistry Elsevier Sequoia S.A., Lausanne Printed in The Netherlands

Preliminary communication

The ¹H nuclear magnetic resonance spectra of some organobismuth compounds

B.C. SMITH and C.B. WALLER

Department of Chemistry, Birkbeck College (University of London), Malet Street, London WC1E 7HX (Great Britain)

(Received August 13th, 1971)

Complex ¹H NMR spectra of organic compounds are sometimes transformed so that they become amenable to first-order analysis, by the addition of derivatives of transition metals or inner-transition metals. These so-called paramagnetic shifts occur particularly in the presence of metals with high nuclear magnetic moments, such as cobalt¹, europium^{2,3}, and praeseodymium⁴. It is shown here that certain organobismuth compounds show spectra which are analysed easily without the addition of a shift reagent, and provide simpler models than other metal aryls⁵ for the study of the anisotropy associated with carbon-metal bonds⁶.

Compounds of the type ArBiX₂, where X is an electronegative group, give apparent first order spectra at 60 MHz. The resolution is much greater than in Ar₂BiX, Ar₃Bi, or Ar₃BiX₂. Some disproportionation occurs in solution, and the products are identified by their chemical shifts. Typical data are recorded in Table 1. The ¹H NMR spectra of phenylbismuth dichloride in dimethyl sulphoxide is reproduced in Fig.1. The o, m; and p-protons appear as well-defined doublet, triplet, and triplet respectively, ³ $J(H-H) \sim 8.0$ Hz, ⁴J(H-H) ~ 1.5 Hz. Solutions in acetonitrile and other donor solvents give similar spectra, in which the seperation between m- and p-protons is even greater than that reported for benzyl alcohol in the presence of tris(dipivalomethanato)europium³.

TABLE 1

¹ H NMR DATA	A FOR ARYLBISMUTH	COMPOUNDS IN	DIMETHYL S	JLPHOXIDE
-------------------------	-------------------	--------------	------------	-----------

	τ (ortho)	T(meta)	τ (para)
PhBiCl ₂	1.00	2.08	2.62
PhBi(O ₂ SPh) ₂	1.21	2.08	d
o TolBiBra	0.66	2.17 b. 2.23 c	2,68
m-TolBiBra	0.95 a, 1.01 b	2.14	2.77
p-TolBiBra	0.97	2,30	
(p-Tol) BiBr	1.76	2.60	_
(p-Tol) ₃ Bi	2.40	2.82	

^a Singlet, ^b Doublet, ^c Triplet, ^d Obscured by benzenesulphinato signal.

J. Organometal. Chem., 32 (1971) C11-C12

Mono-, bis-, and tris-sulphinato derivatives have been prepared from reactions of various organobismuth compounds with liquid sulphur dioxide. The ¹H NMR spectrum of $PhBi(O_2SPh)_2$, which is prepared also from phenylbismuth dichloride with salts of benzene sulphinic acid, and triphenylbismuth with the free acid⁷, confirms that sulphur dioxide undergoes insertion, and that a dithionite structure⁸ can be rejected.

ACKNOWLEDGEMENTS

We thank the S.R.C. for a studentship to C.B.W.

REFERENCES

- 1 C.C. McDonald and W.D. Phillips, Biochem. Biophys. Res. Commun, 35 (1969) 43.
- 2 C.C. Hinckley, J. Amer. Chem. Soc., 91 (1969) 5160.
- 3 J.K.M. Sanders and D.H. Williams, Chem. Commun, (1970) 422.
- 4 J. Briggs, G.H. Frost, F.A. Hart, G.P. Moss and M.L. Staniforth, Chem. Commun., (1970) 749; J. Briggs, F.A. Hart and G.P. Moss, Chem. Commun., (1970) 1506.
- 5 e.g. J.A. Ladd, Spectrochim. Acta, 22 (1966) 1157; G. Fraenkel, D.G. Adams and R. Dean, J. Phys. Chem, 72 (1968) 944; G. Fraenkel, S. Dayagi and S. Kobayashi, J. Phys. Chem., 72 (1968) 953; J. Parker and J.A. Ladd, J. Organometal. Chem., 19 (1969) 1; A. Baici, A. Camus and G. Pellizer, J, Organometal. Chem., 26 (1971) 431.
- 6 H.M. McConnell, J. Chem. Phys., 27 (1957) 226, 7 G.B. Deacon, G.D. Fallon and P.W. Felder, J. Organometal. Chem., 26 (1971) C10.
- 8 S.I.A. El Sheikh and B.C. Smith, Chem. Commun., (1968) 1474.

J. Organometal. Chem., 32 (1971) C11-C12